Sophie Germain

«por temor a la burla ligada a una mujer científica, he adoptado previamente el nombre de M. LeBlanc»


Esta frase la escribió en una de las cartas que envió a Karl Friedrich Gauss en la que le explicaba el uso de un seudónimo masculino. «M. Pernety me informó que él le ha comunicado mi nombre. Esto me lleva a confesarle que no soy tan completamente desconocida para usted, como podría creer, pero que por temor a la burla ligada a una mujer científica, he adoptado previamente el nombre de M. LeBlanc en la comunicación de aquellas notas que, sin duda, no merecen la indulgencia con la que me ha correspondido». Esta era la única manera de que una mujer pudiera participar en la comunidad científica y presentar sus teorías.

Biografía

Marie-Sophie Germain nació el día 1 de Abril de 1776, en la calle de San Denis de París. A los 13 años, en plena Revolución, convencida de que su familia sólo pensaba en el dinero y la política, se refugió en la lectura comenzando con las obras de la biblioteca de su padre. Su interés por las Matemáticas surgió después de leer la Historia de las Matemáticas de Jean-Baptiste Montucla. En particular le impresionó la leyenda de la muerte de Arquímedes, por los soldados romanos, mientras estaba absorto en un problema de geometría. Quedó tan conmovida por el fuerte efecto de la Matemática, capaz de hacer olvidar la guerra, que decidió dedicarse a su estudio.

El matemático italiano Guglielmo Libri, que más tarde será su amigo,  cuenta como superó los obstáculos que sus padres habían ideado para frenar su pasión hacia las Matemáticas. Para que no pudiera estudiar a escondidas de noche, decidieron dejarla sin luz, sin calefacción y sin sus ropas. Sophie parecía dócil, pero sólo en las apariencias, de noche, mientras su familia dormía, se envolvía en mantas y estudiaba a la luz de una vela que previamente había ocultado.

Un día la encontraron dormida sobre su escritorio, con la tinta congelada, delante de una hoja llena de cálculos. Su tenacidad venció la resistencia de su padre que aunque no comprendía su dedicación a las Matemáticas terminó por dejarla libre para estudiar.

Tenía 18 años en 1794, cuando se fundó la Escuela Politécnica de París. Como las mujeres no eran admitidas, (la Escuela Politécnica no admitirá mujeres hasta 1972), consiguió hacerse con apuntes de algunos cursos, entre ellos, el de Análisis de Lagrange. Al final del período lectivo los estudiantes podían presentar sus investigaciones a los profesores, Sophie presentó un trabajo firmándolo como Antoine-Auguste Le Blanc, un antiguo alumno de la escuela. El trabajo impresionó a Joseph Louis Lagrange (1736-1813) por su originalidad y quiso conocer a su autor. Al saber su verdadera identidad, la felicitó personalmente y le predijo éxito como analista, animándola de esta forma a seguir estudiando.

En 1798, Adrien-Marie Legendre (1752-1833) había publicado “Essai sur la théorie des nombres” y en 1801, apareció el libro de Karl Friedrich Gauss (1777-1855) “Disquisitiones Arithmeticae”. Sophie, impresionada por estas obras, se dedicó al estudio de la Teoría de Números.
Entre 1804 y 1809 escribió a Gauss una decena de cartas mostrándole sus investigaciones. Temerosa del ridículo que en aquella época suponía una mujer erudita, las primeras cartas estaban firmadas con el seudónimo “Le Blanc”. Pero esta correspondencia fue irregular, Gauss estaba tan ocupado en su propia investigación que sólo le contestaba cuando el trabajo de Sophie estaba relacionado con sus propios teoremas.

Con motivo de la conquista de Prusia por Napoleón, en la campaña de Iéna (1806), temió por la vida de Gauss y se puso en contacto con un militar amigo de su familia, el general Pernetti, para pedirle que velara por su seguridad. El militar le comunicó que había contactado con Gauss y que éste agradecía su mediación, pero que afirmaba no conocer a Sophie Germain. En la siguiente carta que le escribió tuvo que revelarle la verdad: ella era M. Le Blanc. Gauss sorprendido al conocer su identidad, elogia su talento y su genio. En la última carta que, en esta época, escribió a Gauss, le comentaba un resultado muy importante sobre teoría de números, el teorema que hoy lleva su nombre, pero él no respondió a esa carta.

En 1808, el ingeniero alemán Ernst Chladni presentó en París, sus experiencias sobre la vibración de las superficies elásticas observando las figuras formadas cuando se esparcía arena sobre una placa y se la hacía vibrar al puntear el borde con el arco de un violín. La arena se concentraba donde las vibraciones eran más débiles, formando figuras geométricas muy interesantes. Estas experiencias se realizaron delante de un grupo de élite de 66 personas que constituían la “Primera Clase” de matemáticos y físicos del Instituto de Francia, después se repitieron delante de Napoleón.

La Academia de las Ciencias de París tenía la costumbre de ofrecer un premio al mejor trabajo en ciencias físicas y matemáticas. Se elegía una comisión de cuatro o cinco personas que planteaba un tema y se establecía un programa. Los candidatos tenían dos años para hacer la memoria que presentaban de forma anónima. En 1809 la cuestión que propuso la Academia fue obtener una teoría matemática sobre las superficies elásticas que explicara las experiencias de Ernst Chladni.

La convocatoria de este concurso y el hecho de que Gauss ya no contestaba a sus cartas, propiciaron que Sophie abandonara la Teoría de Números y comenzara sus investigaciones en física-matemática. Tuvo que presentar tres memorias sucesivas en 1811, 1813 y 1815 hasta conseguir, el 8 de enero de 1816, el “Prix Extraordinaire” de la Academia de Ciencias. Se reunió mucha gente para ver a la famosa mujer matemática, pero Sophie no asistió a la ceremonia de entrega. Aunque años antes se había considerado una novata entre gigantes, en ese momento no sentía ninguna admiración por muchos de sus colegas.

A partir de entonces consiguió el respeto y el reconocimiento por parte de la comunidad científica, debido, sobre todo, a su amistad con Jean-Baptiste Joseph Fourier (1768-1830) que, después de ser elegido Secretario Permanente de la Academia de Ciencias, le permitió asistir a sesiones, siendo la primera mujer, no esposa de académico, que lo hizo. También continuó sus investigaciones con Legendre sobre Teoría de Números con el que trabajaba en un plano de igualdad, y reanudó la correspondencia con Gauss sobre este tema.

El 27 de junio de 1831 murió en París a consecuencia de un cáncer de pecho a los 55 años. A pesar de su extensa correspondencia, Gauss y Sophie nunca se conocieron personalmente. Gauss intentó que la Universidad de Göttingen le otorgara el título de doctor honoris causa pero a pesar de su gran influencia en esta universidad, su propuesta no tuvo éxito.

Su trabajo

En 1808 comunicó a Gauss su más brillante descubrimiento en Teoría de Números. Demostraba que si x, y, z son números enteros, tales que x5+y5+z5=0 entonces, al menos uno de los números x, y o z debe ser divisible por 5. Más tarde generalizó este resultado en el teorema que hoy lleva su nombre.

El Teorema de Germain constituyó un paso importante para demostrar el último teorema de Fermat. De hecho a partir de entonces la demostración se dividió en dos casos: el primero consistía en probarlo cuando ninguno de los números x, y, z es divisible por n, y el segundo cuando uno sólo de los tres números es divisible por n. Además con esta clasificación el primer caso del Teorema de Fermat para n =5 quedaba probado. En 1825 Legendre y Dirichlet completaron la demostración para n = 5 en el segundo caso.

El teorema de Sophie Germain demuestra que si n es un número primo tal que 2n +1 es primo, entonces el primer caso del teorema de Fermat es verdadero. El trabajo se había simplificado a la mitad. El teorema de Germain será el resultado más importante relacionado con la conjetura de Fermat desde 1738 hasta la obra de Ernst Eduard Kummer (1810-1893) en 1840. En Teoría de Números se dice que un número natural es un número primo de Germain, si el número n es primo y 2n+1 también lo es. Los números primos de Sophie Germain inferiores a 200, son: 2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191.

Posteriormente, hacia 1819, Sophie retomó sus trabajos en Teoría de Números. De esta época es otro de los resultados de Sophie. Utilizando adecuadamente su teorema conseguía demostrar que para todo número primo n menor que 100 (y por lo tanto para todo número menor que 100) no existe solución a la ecuación de Fermat, cuando los números x, y, z no son divisibles por n. Legendre seguirá su demostración para números primos n menores que 197.

Las investigaciones de Sophie, en Teoría de Números, sólo serán conocidas porque Legendre las menciona en un artículo de 1823 que apareció en las “Memoires de l’Academy des Sciences” en 1827, y en su “Théorie des Nombres” que se publicó en 1830. Una de las versiones más completas de su trabajo sobre la conjetura de Fermat es un manuscrito titulado “Observaciones sobre la imposibilidad de satisfacer la ecuación: xn + yn = zn”, que se conserva en la Biblioteca Moreniana de Florencia.

Sus investigaciones en teoría de la elasticidad comienzan a partir de 1809 cuando la Academia de Ciencias de París propone como tema, para obtener el premio extraordinario de la Academia: “Donner la théorie mathématique des surfaces élastiques et la comparer à l’expérience”. Pierre Simon Laplace (1749-1827) que organizó este concurso esperaba poder establecer la reputación de su protegido Siméon Denis Poisson (1781-1840). Pero Poisson no participó.

Sophie postula que “en un punto de la superficie la fuerza de elasticidad es proporcional a la suma de las curvaturas principales de la superficie en dicho punto”, que es lo que siempre llamará “mi hipótesis”. A partir de una supuesta relación de equilibrio y utilizando varias hipótesis sobre los desplazamientos y rotaciones de la placa obtenía una ecuación en derivadas parciales de sexto orden en la que buscaba soluciones regulares, en casos particulares, mediante series trigonométricas.